AI-Based Screening for Depression and Social Anxiety Through Eye Tracking: An Exploratory Study.
Abstract
Well-being is a dynamic construct that evolves over time and fluctuates within individuals, posing challenges in its quantification. Reduced well-being is often associated with depression or anxiety disorders, characterised by biases in visual attention towards specific stimuli, such as human faces. This paper introduces a novel approach to AI-aided screening of these affective disorders by analysing scan paths of visual attention using convolutional neural networks (CNNs). Data were collected during two studies assessing (1) attention tendencies among individuals diagnosed with major depression and (2) social anxiety. These data were applied to residual CNNs through images generated from eye-gaze patterns. The experimental results, obtained using ResNet architectures, demonstrated a promising average accuracy of 48% for a three-class system and 62% for a two-class system. Based on these exploratory findings, we propose that this method could be utilised in rapid, ecological, and effective mental health screening systems to quantify well-being through eye-tracking.
DOI: https://doi.org/10.54663/2182-9306.2024.SpecialIssueMBP.75-91
Keywords
Full Text:
PDFReferences
Armstrong, T., & Olatunji, B. (2012). Eye Tracking of Attention in the Affective Disorders: a Meta-Analytic Review and Synthesis. Clinical Psychology Review, 32, 704—723.
Caseras, X., Garner, M., Bradley, B. P., & Mogg, K. (2007). Biases in visual orienting to negative and positive scenes in dysphoria: An eye movement study. Journal of Abnormal Psychology, 116(3), 491.
Chlasta, K., & Wołk, K. (2021). Towards computer-based automated screening of dementia through spontaneous speech. Frontiers in Psychology, 11, 623237.
Clark, D. M. (1999). Anxiety disorders: Why they persist and how to treat them. Behaviour Research and Therapy, 37(1), S5.
Clark, D. M., & Wells, A. (1995). A Cognitive Model of Social Phobia. Social Phobia: Diagnosis, Assessment, and Treatment, 41(68), 00022–3.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierarchical Image Database. In Cvpr09.
De Raedt, R., & Koster, E. H. (2010). Understanding vulnerability for depression from a cognitive neuroscience perspective: A reappraisal of attentional factors and a new conceptual framework. Cognitive, Affective, & Behavioral Neuroscience, 10(1), 50–70.
Disner, S. G., Shumake, J. D., & Beevers, C. G. (2017). Self-referential schemas and attentional bias predict severity and naturalistic course of depression symptoms. Cognition and Emotion, 31(4), 632–644.
Donaldson, C., Lam, D., & Mathews, A. (2007). Rumination and attention in major depression. Behaviour Research and Therapy, 45(11), 2664–2678.
Duque, A., & Vázquez, C. (2015). Double attention bias for positive and negative emotional faces in clinical depression: Evidence from an eye-tracking study. Journal of Behavior Therapy and Experimental Psychiatry, 46, 107–114.
Eizenman, M., Lawrence, H. Y., Grupp, L., Eizenman, E., Ellenbogen, M., Gemar, M., & Levitan, R. D. (2003). A naturalistic visual scanning approach to assess selective attention in major depressive disorder. Psychiatry research, 118(2), 117–128.
Ellis, A. J., Fischer, K. M., & Beevers, C. G. (2010). Is dysphoria about being red and blue? potentiation of anger and reduced distress tolerance among dysphoric individuals. Cognition & Emotion, 24(4), 596–608.
Foland-Ross, L. C., & Gotlib, I. H. (2012). Cognitive and neural aspects of information processing in major depressive disorder: an integrative perspective. Frontiers in Psychology, 3, 489.
Goeleven, E., De Raedt, R., Leyman, L., & Verschuere, B. (2008). The karolinska directed emotional faces: a validation study. Cognition and emotion, 22(6), 1094–1118.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778).
Holas, P., Krejtz, I., Wisiecka, K., Rusanowska, M., & Nezlek, J. B. (2020). Modification of attentional bias to emotional faces following mindfulness-based cognitive therapy in people with a current depression. Mindfulness, 1–11.
Horley, K., Williams, L. M., Gonsalvez, C., & Gordon, E. (2003). Social Phobics do not see eye to eye: a Visual Scanpath Study of Emotional Expression Processing. Journal of Anxiety Disorders, 17(1), 33–44.
Horley, K., Williams, L. M., Gonsalvez, C., & Gordon, E. (2004). Face to Face: Visual Scanpath Evidence for Abnormal Processing of Facial Expressions in Social Phobia. Psychiatry Research, 127(1), 43–53.
Howard, J., & Gugger, S. (2020). Fastai: A layered api for deep learning. Information, 11(2), 108.
Iancu, I., Bodner, E., & Ben-Zion, I. Z. (2015). Self-esteem, dependency, self-efficacy and self-criticism in social anxiety disorder. Comprehensive psychiatry, 58, 165–171.
Iqbal, S., N. Qureshi, A., Li, J., & Mahmood, T. (2023). On the analyses of medical images using traditional machine learning techniques and convolutional neural networks. Archives of Computational Methods in Engineering, 30(5), 3173–3233.
Kellough, J. L., Beevers, C. G., Ellis, A. J., & Wells, T. T. (2008). Time course of selective attention in clinically depressed young adults: An eye tracking study. Behaviour research and therapy, 46(11), 1238–1243.
Krejtz, K., Wisiecka, K., Krejtz, I., Holas, P., Olszanowski, M., & Duchowski, A. T. (2018). Dynamics of Emotional Facial Expression Recognition in Individuals with Social Anxiety. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (pp. 43:1–43:9). New York, NY, USA: ACM. doi: 10.1145/3204493.3204533
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 25 (pp. 1097–1105). Curran Associates, Inc.
Leyman, L., De Raedt, R., Vaeyens, R., & Philippaerts, R. M. (2011). Attention for emotional facial expressions in dysphoria: An eye-movement registration study. Cognition and Emotion, 25(1), 111–120.
Liebowitz, M. R. (1987). Social Phobia. In K. D.F. (Ed.), Anxiety (Vol. 22, pp. 141–173). Karger Publishers.
Owens, M., & Gibb, B. E. (2017). Brooding rumination and attentional biases in currently non-depressed individuals: An eye-tracking study. Cognition and Emotion, 31(5), 1062–1069.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... others (2019). Pytorch: An imperative style, high-performance deep learning library. In Advances in neural information processing systems (pp. 8024–8035).
Peckham, A. D., McHugh, R. K., & Otto, M. W. (2010). A meta-analysis of the magnitude of biased attention in depression. Depression and anxiety, 27(12), 1135–1142.
Radloff, L. S. (1977). The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Applied Psychological Measurement, 1(3), 385–401.
Rapee, R. M., & Heimberg, R. G. (1997). A Cognitive-behavioral Model of Anxiety in Social Phobia. Behaviour Research and Therapy, 35(8), 741–756.
Sanchez, A., Vazquez, C., Marker, C., LeMoult, J., & Joormann, J. (2013). Attentional disengagement predicts stress recovery in depression: An eye-tracking study. Journal of Abnormal Psychology, 122(2), 303.
Sears, C. R., Newman, K. R., Ference, J. D., & Thomas, C. L. (2011). Attention to emotional images in previously depressed individuals: An eye-tracking study. Cognitive Therapy and Research, 35(6), 517–528.
Sears, C. R., Thomas, C. L., LeHuquet, J. M., & Johnson, J. C. (2010). Attentional biases in dysphoria: An eye-tracking study of the allocation and disengagement of attention. Cognition and Emotion, 24(8), 1349–1368.
Shang, W., Chiu, J., & Sohn, K. (2017). Exploring normalization in deep residual networks with concatenated rectified linear units. In Thirty-first AAAI Conference on Artificial Intelligence.
Sonnentag, S. (2015). Dynamics of well-being. Annu. Rev. Organ. Psychol. Organ. Behav., 2(1), 261–293.
Still, M. (2006). The definitive guide to ImageMagick. Apress.
Topp, C. W., Østergaard, S. D., Søndergaard, S., & Bech, P. (2015). The who-5 well-being index: a systematic review of the literature. Psychotherapy and psychosomatics, 84(3), 167–176.
Van Gumster, J., & Shimonski, R. (2011). GIMP bible. John Wiley and Sons.
Van Kleef, G. A., Van Doorn, E. A., Heerdink, M. W., & Koning, L. F. (2011). Emotion is for influence. European Review of Social Psychology, 22(1), 114–163.
Williams, J., & Scott, J. (1988). Autobiographical memory in depression. Psychological medicine, 18(3), 689–695.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Karol Henryk Chlasta, Katarzyna Wisiecka, Krzysztof Krejtz, Izabela Krejtz
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
International Journal of Marketing, Communication and New Media
ISSN: 2182-9306
DOI: 10.54663/2182-9306
Qualis Periódicos - CAPES: B2
REBIB: Q2
Indexing:
Web of Science - Emerging Sources Citation Index - Clarivate Analytics
Journal Citation Reports (JCR) 2021, 2022, 2023
QUALIS CAPES - GOOGLE SCHOLAR - LATINDEX - REDIB - RCAAP - OAJI - DRJI - MIAR - LIVRE - ERIH PLUS - INDEX COPERNICUS -